Gravitational waves from self-ordering scalar fields

Sachiko Kuroyanagi APCTP

in collaboration with Takashi Hiramatsu (Kyoto U.) and J. Yokoyama (U. of Tokyo)

ordering

breaking global symmetry

= realignment of the field

GWs from self-ordering scalar field

generation of gravitational waves

GWs from self-ordering scalar field

the realignment always happens at horizon scale \rightarrow scale-invariant gravitational waves

2 parameters N=2 Φ₂ Φı

power of GWs $\propto \beta^4/N$

N: the number of field

- N=I domain wall
- N=2 cosmic string
- N=3 monopole
- N=4 texture

L. Krauss, PLB 284 (1992) 229; K. Jones-Smith, PRL 100 (2008) 131302

Sensitivity curves of GW experiments

GWs from self-ordering fields

flat spectrum = predicted assuming RD universe

My work

- run lattice simulations
- study the behavior of GWs for different Hubble expansion rate
- investigate how reheating affect the spectrum
- compare with gravitational wave spectrum from inflation

Equations to solve

Effect of the Hubble expansion rate

Equation for gravitational waves

$$h_{ij}'' + 2\mathcal{H}h_{ij}' - \Delta h_{ij} = \frac{2}{m_{\text{pl}}^2} \left(\sum_m \partial_k \phi_m \partial_\ell \phi_m \right)^{\text{TT}}$$

conformal Hubble: $\mathcal{H} = \frac{8\pi G}{3} a^2 \rho$ anisotropic stress

mm

result of numerical simulation (RD)

Good agreement with analytical stydies

L. Krauss, PLB 284 (1992) 229; K. Jones-Smith, PRL 100 (2008) 131302; E. Fenu et al, JCAP10 (2009) 005

result of numerical simulation

result of numerical simulation

detectability in DECIGO

N=4

different N

Comparison with inflationary GWs

 $\beta = 0.9 \times 10^{-3} m_{\text{pl}}$

difference seen in large N case?

Summary

- Self-ordering scalar fields generate scale-invariant gravitational waves
- Our numerical simulation shows good agreement with the analytic estimation.
- We found reheating signature is induced in the similar way to inflationary GWs, but it has a small differences.
- We investigated whether future GW experiments can distinguish the origin of GWs.

 \rightarrow would be possible if $\Omega_{GW} > 10^{-14}$